天康集团
主页 > 新闻资讯 > 技术支持 >

温度传感器的种类和应用

2018.12-.08 字号: 分享

  安徽天康集团生产的温度传感器 有热电偶,热电阻,双金属温度计等,广泛应用于石油,化工,电厂,水泥,医药等各种工业测温场所,是国内最大的温度传感器生产制造商,产品远销国内外市场,获得了非常好的口碑!

  温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

  中文名温度传感器外文名temperature transducer开始时间17世纪初主要类型热电偶、热敏电阻等目录1 主要分类▪ 接触式▪ 非接触式2 工作原理▪ 电阻传感▪ 热电偶传感3 挑选方法4 选用注意5 检定装置6 安装使用7 发展状况8 主要用途9 应用领域主要分类

  接触式接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。

温度传感器(图2)
温度传感器(图2)一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。

 

  非接触式它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。

 
温度传感器(图3)辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。
 
温度传感器(图4)至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温 逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。

 

  工作原理金属膨胀原理设计的传感器金属在环境温度变化后会产生一个相应的延伸,因此传感器可以以不同方式对这种反应进行信号转换。双金属片式传感器双金属片由两片不同膨胀系数的金属贴在一起而组成,随着温度变化,材料A比另外一种金属膨胀程度要高,引起金属片弯曲。弯曲的曲率可以转换成一个输出信号。双金属杆和金属管传感器随着温度升高,金属管(材料A)长度增加,而不膨胀钢杆(金属B)的长度并不增加,这样由于位置的改变,金属管的线性膨胀就可以进行传递。反过来,这种线性膨胀可以转换成一个输出信号。液体和气体的变形曲线设计的传感器在温度变化时,液体和气体同样会相应产生体积的变化。多种类型的结构可以把这种膨胀的变化转换成位置的变化,这样产生位置的变化输出(电位计、感应偏差、挡流板等等)。

  电阻传感金属随着温度变化,其电阻值也发生变化。对于不同金属来说,温度每变化一度,电阻值变化是不同的,而电阻值又可以直接作为输出信号。电阻共有两种变化类型正温度系数温度升高 = 阻值增加温度降低 = 阻值减少负温度系数温度升高 = 阻值减少温度降低 = 阻值增加

  热电偶传感热电偶由两个不同材料的金属线组成,在末端焊接在一起。再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为热电偶。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。 [1] 由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。

  挑选方法如果要进行可靠的温度测量,首先就需要选择正确的温度仪表,也就是温度传感器。其中热电偶、热敏电阻、铂电阻(RTD)和温度IC都是测试中最常用的温度传感器。以下是对热电偶和热敏电阻两种温度仪表的特点介绍。1、热电偶热电偶是温度测量中最常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,

 
温度传感器(图5)而且结实、价低,无需供电,也是最便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。可用测量的电势差来计算温度。不过,电压和温度间是非线性关系,温度由于电压和温度是非线性关系,因此需要为参考温度(Tref)作第二次测量,并利用测试设备软件或硬件在仪器内部处理电压-温度变换,以最终获得热偶温度(Tx)。Agilent34970A和34980A数据采集器均有内置的测量了运算能力。简而言之,热电偶是最简单和最通用的温度传感器,但热电偶并不适合高精度的的测量和应用。2、热敏电阻热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。
 
温度传感器(图6)温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。热敏电阻在两条线上测量的是绝对温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。热敏电阻还有其自身的测量技巧。热敏电阻体积小是优点,它能很快稳定,不会造成热负载。不过也因此很不结实,大电流会造成自热。由于热敏电阻是一种电阻性器件,任何电流源都会在其上因功率而造成发热。功率等于电流平方与电阻的积。因此要使用小的电流源。如果热敏电阻暴露在高热中,将导致永久性的损坏。通过对两种温度仪表的介绍,希望对大家工作学习有所帮助。

 

  选用注意1、被测对象的温度是否需记录、

 
温度传感器(图7)报警和自动控制,是否需要远距离测量和传送;2、测温范围的大小和精度要求;3、测温元件大小是否适当;4、在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求;5、被测对象的环境条件对测温元件是否有损害;6、价格如保,使用是否方便。

 

  检定装置温度传感器检定规程:1、《JJG229-2010工业铂、

温度传感器(图8)
温度传感器(图8)铜热电阻检定规程》2、《JJG833-2007标准组铂铑10-铂热电偶检定规程》3、《JJG141-2000工作用贵金属热电偶检定规程》4、《JJG351-1996工作用廉金属热电偶检定规程》5、《JJG368-2000工作用铜-铜镍热电偶检定规程》温度传感器检定标准技术及指标:1、测量准确度:0.01级;分辨率0.1uV和0.1mΩ;2、扫描开关寄生电势:≤0.4μV;3、温度范围: 水槽:(室温+5~95)℃ 油
 
温度传感器(图9)槽:(95 ~ 300)℃ 低温恒温槽:(-80 ~ 100)℃ 高温炉:(300~1200)℃;4、控温稳定度:优于0.01℃/10min(油槽、水槽、低温恒温槽);0.2℃/min(管式检定炉);5、总不确定度:热电偶检定,测量不确定度优于0.7℃,重复性误差<0.25℃;热电阻检定测量不确定度优于50mk,重复性误差<10mk;6、检定数量:一次可同时检热电偶(1-8)支,一次可同时检同线制热电阻(1-7)支;7、工作电源:AC220V±10%,50Hz,并有良好保护接地;8、高温炉功率:约2KW;9、恒温槽功率:约2KW;10、微机测控系统功率:<500。温度传感器检定装置功能和特点:1、检定K、E、J、N、B、S、R、T等多种型号的工作用热电偶;2、检定Pt100、Pt10、Cu50、Cu100等各种工作用热电阻,
 
温度传感器(图10)玻璃液体温度计、压力式温度计、双金属温度计;3、多路低电势自动转换开关,寄生电势≤0.4μV;4、控制1-4台高温炉;5、温场测试:可进行检定炉、油槽、水槽、低温恒温槽的温场测试;6、线制转换:可进行二线制、三线制、四线制电阻检定;7、软件具有比对实验、重复性实验、温场实验等相关实验功能;8、在Windows2000/XP以上平台,全中文界面,标准Windows操作系统,方便快捷。可实现:1)设备自检、查线;2)屏幕显示并保存控温曲线≤0.4μV;3)检测数据自动采集;4)自动生成符合要求的检定记录;5)自动保存检定结果,且不可人工更改;6)查询各种热电偶、热电阻分度表及其它帮助;7)热电偶、热电阻所有历史检定数据、控温曲线查询 统计及计量的智能化管理功能。

 

  安装使用温度传感器在安装和使用时,应当注意以下事项方可保证最佳测量效果:1、安装不当引入的误差如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,

 
温度传感器(图11)换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。2、绝缘变差而引入的误差如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。3、热惰性引入的误差由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,
 
温度传感器(图12)在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。4、热阻误差高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。

 

  发展状况近年来,我国工业现代化的进程和电子信息产业连续的高速增长,

 
温度传感器(图13)带动了传感器市场的快速上升。温度传感器作为传感器中的重要一类,占整个传感器总需求量的40%以上。温度传感器是利用NTC的阻值随温度变化的特性,将非电学的物理量转换为电学量,从而可以进行温度精确测量与自动控制的半导体器件。温度传感器用途十分广阔,可用作温度测量与控制、温度补偿、流速、流量和风速测定、液位指示、温度测量、紫外光和红外光测量、微波功率测量等而被广泛的应用于彩电、电脑彩色显示器、切换式电源、热水器、电冰箱、厨房设备、空调、汽车等领域。近年来汽车电子、消费电子行业的快速增长带动了我国温度传感器需求的快速增长。

 

  主要用途温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的测量参数。温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%。温度传感器是通过物体随温度变化而改变某种特性来间接测量的。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。由于工农业生产中温度测量的范围极宽,从零下几百度到零上几千度,而各种材料做成的温度传感器只能在一定的温度范围内使用。温度传感器与被测介质的接触方式分为两大类:接触式和非接触式。接触式温度传感器需要与被测介质保持热接触,使两者进行充分的热交换而达到同一温度。这一类传感器主要有电阻式、热电偶、PN结温度传感器等。非接触式温度传感器无需与被测介质接触,而是通过被测介质的热辐射或对流传到温度传感器,以达到测温的目的。这一类传感器主要有红外测温传感器。这种测温方法的主要特点是可以测量运动状态物质的温度(如慢速行使的火车的轴承温度,旋转着的水泥窑的温度)及热容量小的物体(如集成电路中的温度分布)。

  应用领域温度传感器 [2] 是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继 开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。

  两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不 加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为“热电偶”。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度 也各不相同。

  K型热电偶作为一种温度传感器,K型热电偶通常和显示仪表,记录仪表和电子调节器配套使用。K型热电偶可以直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。

高清K型热电偶图片

高清K型热电偶图片K型热电偶是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。K型热电偶丝直径一般为1.2mm~4.0mm。正极(KP)的名义化学成分为:Ni:Cr=90:10,负极(KN)的名义化学成分为:Ni:Si=97:3,其使用温度为-200℃~1300℃。K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中广泛为用户所采用。K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛。

 

  测温原理编辑热电偶测温必须由热电偶、连接导线及显示仪表三部分组成。下图是最简单的热电偶测温示意图。

热电偶温度计示意图

热电偶温度计示意图按右图组成的热电偶蕊及测温电偶丝1 ,如果将热电偶的热端加热,使得冷、热两端的温度不同,则在该热电偶回路中就会产生热电势,这种物理现象就称为热电现象(即热电效应)。在热电偶回路中产生的电势由温差电势和接触电势两部分组成。接触电势:它是两种电子密度不同的导体相互接触时产生的一种热电势。当两种不同的导体A和B相接触时,假设导体A和B的电子密度分别为Na和Nb并且Na>Nb,则在两导体的接触面上,电子在两个方向的扩散率就不相同,由导体A扩散到导体B的电子数比从B扩散到A的电子数要多。导体A失去电子而显正电,导体B获得电子而显负电。因此,在A、B两导体的接触面上便形成一个由A到B的静电场,这个电场将阻碍扩散运动的继续进行,同时加速电子向相反方向运动,使从B到A的电子数增多,最后达到动态平衡状态。此时A、B之间也形成一电位差,这个电位差称为接触电势。此电势只与两种导体的性质相接触点的温度有关,当两种导体的材料一定,接触电势仅与其接点温度有关。温度越高,导体中的电子就越活跃,由A导体扩散到B导体的电子就越多,接触面处所产生的电动势就越大,即接触电势越大。

 

  特点编辑

  综述检出(测温)元件热电偶是工业上最常用的温度检测元件之一。必须配二次仪表,其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。2根据温度测量范围及精度,选用相应分度号的热电偶使用温度在1300~1800℃,要求精度又比较高时,一般选用B型热电偶;要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电偶;使用温度在1000~1300℃要求精度又比较高可用S型热电偶和N型热电偶;在1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型热电偶;250℃下以及负温测量一般用T型电偶,在低温时T型热电偶稳定而且精度高。测量范围及允许误差范围

 

  热电偶类别代号分度号测量范围基本误差限

  镍铬-康铜WRKE0-800℃±0.75%t

  镍铬-镍硅WRNK0-1300℃±0.75%t

  注:t为感温元件实测温度值(℃)电场强度越高,因而接触电势也就越大。这样将1产生的温差热电势通过连接导线2在显示仪表3中显示出来。

  时间常数

  热惰性级别时间常数(秒)热惰性级别时间常数(秒)

  Ⅰ90-180Ⅲ10-30

  Ⅱ30-90Ⅳ<10

  热电偶公称压力:一般是指在工作温度下保护管所能承受的静态外压而破裂。热电偶 最小插入深度:应不小于其保护套管外径的8-10倍(特列产品例外)绝缘电阻:当周围空气温度为15-35℃,相对湿度<80%时绝缘电阻≥5兆欧(电压100V)。具有防溅式接线盒的热电偶,当相对温度为93± 3℃ 时,绝缘电阻≥0.5兆欧(电压100V)高温下的绝缘电阻:K型

高清热电偶图片

高清热电偶图片热电偶在高温下,其热电极(包括双支式)与保护管以及双支热电极之间的绝缘电阻(按每米计)应大于下表规定的值。

 

  规定的长时间使用温度(℃)试验温度(℃)绝缘电阻值(Ω)

  ≥60060072000

  ≥ 80080025000

  ≥100010005000

  分度表温度单位:℃ 电压单位:mV) 参考温度点:0℃(冰点)

  温度0-10-20-30-40-50-60-70-80-90-95-100

  -200-5.8914-6.0346-6.1584-6.2618-6.3438-6.4036-6.4411-6.4577

  -100-3.5536-3.8523-4.1382-4.4106-4.669-4.9127-5.1412-5.354-5.5503-5.7297-5.8128-5.8914

  00-0.3919-0.7775-1.1561-1.5269-1.8894-2.2428-2.5866-2.9201-3.2427-3.3996-3.5536

  温度 010203040506070809095100

  000.39690.79811.20331.61182.02312.43652.85123.26663.68193.88924.0962

  1004.09624.50914.91995.32845.73456.13836.54026.94067.347.73917.93878.1385

  2008.13858.53868.93999.34279.747210.153410.561310.970911.382111.794712.001512.2086

  30012.208612.623613.039613.456613.874514.293114.712615.132715.553615.97516.18616.3971

  40016.397116.819817.243117.666918.091118.515818.940919.366319.792120.218120.431220.6443

  50020.644321.070621.497121.923622.3522.776423.202723.628824.054724.480224.692924.9055

  60024.905525.330325.754726.178626.60227.024927.447127.868628.289528.709628.919429.129

  70029.12929.547629.965330.382230.798331.213531.627732.04132.453432.864933.070333.2754

  80033.275433.684934.093434.50134.907535.313135.717736.121236.523836.925437.125837.3259

  90037.325937.725538.12438.521538.91839.313539.70840.101540.493940.885341.080641.2756

  100041.275641.664942.053142.440342.826343.211243.595143.977744.359344.739644.929345.1187

  110045.118745.496645.873346.248746.622746.995547.366847.736848.105448.472648.655648.8382

  120048.838249.202449.565149.926350.285850.643951.000351.355251.708552.060252.235452.4103

  130052.410352.758853.105853.451253.795254.137754.478854.8186

  产品资料编辑K型热电偶选型资料

  WR规格内容

  N镍铬-镍硅 K

  K镍铬-铜镍 (镍铬-康铜)E

  1无固定式装置式

  2固定螺纹式

  -3活动式法兰

  4固定法兰式

  5活动法兰角尺形式

  6固定螺纹锥形保护管式

  2防溅式

  3防水式

  4隔爆式

  016mm金属保护管

  120mm金属保护管

  安装固定形式接线盒形式216mm瓷保护管

  320mm瓷保护管

  425mm瓷保护管

  WR□-□□□

  ITS-90国际温度标准(JIS C 1602-1995,ASTM E230-1996,IEC 584-1-1995)热电偶安装注意点(1)热电偶应尽量垂直装在水平或垂直管道上,安装时应有保护套管,以方便检修和更换。(2)热电偶的冷端应处在同一环境温度下,应使用同型号的补偿导线,且正负要接对。(3)测量管道内温度时,元件长度应在管道中心线上(即保护管插入深度应为管径的一半)。(4)温度动圈表安装时,开孔尺寸要合适,安装要美观大方。(5)高温区使用耐高温电缆或耐高温补偿线。(6)要根据不同的温度选择不同的测量元件。一般测量温度大于100℃时,应选择热电偶,小于100℃时选择热电阻。(7)接线要合理美观,表针指示要正确。

  响应时间测量编辑测量K型热电偶的热响应时间实际上是比较复杂的,不同的试验条件会产生不同的测量结果,这是由于受周围介质的换热率影响,换热率高,则热响应时间就短。

  为了使热电偶的热响应时间具有可比性,国家标准规定:热响应时间应在专用水流试验装置上进行。该装置的水流速度应保持0.4±0.05m/s,初始温度在5-45℃的范围内,温度阶 跃值为40-50℃。在试验过程中,水的温度变化应不大于温度阶跃值的±1%。被试热电偶的置入深度为150mm或设计的置入深度。

  由于热电偶在室温附近热电势很小,热响应时间不容易测出,因此国家标准规定可采用同规格的K型热电偶的热电极组件替换其自身的热电极组件,然后进行试验。

  试验时应记录热电偶的输出变化至相当于温度阶跃变化50%的时间T0.5,必要时可记录变化10%的热响应时间T0.1和变化90%的热响应时间T0.9。所记录的热响应时间,应是同一试验 至少三次测试结果的平均值,每次测量结果对于平均值的偏离应在±10%以内。此外,形成温度阶跃变化所需的时间不应超过被测试热电偶的T0.5的十分之一。记录仪器或仪表的响 应时间不应超过被试热电偶的T0.5的十分之一。

  四大定律编辑

  均质导体定律热电偶丝由同一种均质材料(导体或半导体)两端焊接组成闭合回路,无论导体截面如何以及温度如何分布,将不产生接触电势,温差电势相抵消,回路中总电势为零。可见,热电偶必须由两种不同的均质导体或半导体构成。若热电极材料不均匀,由于温度梯存在,将会产生附加热电势。

  中间导体定律在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路总电势没有影响,这就是中间导体定律。应用:依据中间导体定律,在热电偶实际测温应用中,常采用热端焊接、冷端开路的形式,冷端经连接导线与显示仪表连接构成测温系统。有人担心用铜导线连接热电偶冷端到仪表读取mV值,在导线与热电偶连接处产生的接触电势会使测量产生附加误差。根据这个定律,是没有这个误差的!

  中间温度定律热电偶回路两接点(温度为T、T0)间的热电势,等于热电偶在温度为T、Tn时的热电势与在温度为Tn、T0时的热电势的代数和。Tn称中间温度。应用:由于热电偶E-T之间通常呈非线性关系,当冷端温度不为0摄氏度时,不能利用已知回路实际热电势E(t,t0)直接查表求取热端温度值;也不能利用已知回路实际热电势E(t,t0)直接查表求取的温度值,再加上冷端温度确定热端被测温度值,需按中间温度定律进行修正。初学者经常不按中间温度定律来修正!

  参考电极定律这个定律是专业人士才研究、关注的,一般生产、使用环节的人士不太了解,简单说明就是:用高纯度铂丝做标准电极,假设镍铬-镍铬热电偶的正负极分别和标准电极配对,他们的值相加是等于这支镍铬-镍铬的值。

  热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶 温度传感器的灵敏度与材料的粗细无关

  pt100温度传感器是一种将温度变量转换为可传送的标准化输出信号的仪表。主要用于工业过程温度参数的测量和控制。带传感器的变送器通常由两部分组成:传感器和信号转换器。传感器主要是热电偶或热电阻;信号转换器主要由测量单元、信号处理和转换单元组成(由于工业用热电阻和热电偶分度表是标准化的,因此信号转换器作为独立产品时也称为变送器),有些变送器增加了显示单元,有些还具有现场总线功能。

  中文名pt100温度传感器性 质仪表主要用于工业过程温度参数的测量和控制组 成传感器和信号转换器目录1 简介2 分度表3 如何安装4 测量方法5 其他产品▪ 产品简介▪ 详细内容▪ 技术参数▪ 型号指南简介编辑温度是自然界中和人类打交道最多的物理参数之一,无论是在生产实验场所,还是在居住休闲场所,温度的采集或控制都十分频繁和重要,而且,网络化远程采集温度并报警是现代科技发展的一个必然趋势。 由于温度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温传感器就会相应产生。由于PT100热电阻的温度与阻值变化关系,人们便利用它的这一特性,发明并生产了PT100热电阻温度传感器。它是集温度湿度采集于一体的智能传感器。温度的采集范围可以在-200℃~+850℃,湿度采集范围是0%~100%。

  分度表编辑-50度 80.31欧姆-40度 84.27欧姆-30度 88.22欧姆-20度 92.16欧姆-10度 96.09欧姆0度 100.00欧姆10度 103.90欧姆20度 107.79欧姆30度 111.67欧姆40度 115.54欧姆50度 119.40欧姆60度 123.24欧姆70度 127.08欧姆80度 130.90欧姆90度 134.71欧姆100度 138.51欧姆110度 142.29欧姆120度 146.07欧姆130度 149.83欧姆140度 153.58欧姆150度 157.33欧姆160度 161.05欧姆170度 164.77欧姆180度 168.48欧姆190度 172.17欧姆200度 175.86欧姆应用范围:医疗、电机、工业、温度计算、阻值计算等高精温度设备,应用范围非常之广泛。

  如何安装编辑pt100温度传感器如果由两个用来测量温差的传感器组成,输出信号与温差之间有一给定的连续函数关系。故称为。pt100温度传感器输出信号与温度变量之间有一给定的连续函数关系(通常为线性函数),早期生产的pt100温度传感器其输出信号与温度传感器的电阻值(或电压值)之间呈线性函数关系。标准化输出信号主要为0mA~10mA和4mA~20mA(或1V~5V)的直流电信号。不排除具有特殊规定的其他标准化输出信号。温度变送器按供电接线方式可分为两线制和四线制。[2]变送器有电动单元组合仪表系列的(DDZ-Ⅱ型、DDZ-Ⅲ型和DDZ-S型)和小型化模块式的,多功能智能型的。前者均不带pt100温度传感器,后两类变送器可以方便的与热电偶或热电阻组成带传感器的变送器。

pt100温度传感器

pt100温度传感器

 

  测量方法编辑恒流恒压法在传统的仪器仪表中,一般都采用这种方法,在构建恒流或者恒压法后,在利用欧姆定律,算出Pt100的阻值,然后查询分度表,得到温度。这种方法最简单也最通用。通用传感器接口UTI法传统的方法虽然简单,但是有很多不足。使用通用传感器接口芯片,只需要一个对温度不敏感的参考电阻,把Pt100接上UTI的电路,可以通过MCU得到Pt100和参考电阻的比例,从而得到阻值和温度。这种方法非常适用于基于微处理器(MCU)的系统,UTI所有的信息只通过一MCU兼容的信号输出,这样大大的减少了各分立模块之间的外接线和耦合器。a)接1个Pt100的接线图

a)

a) [1]__b)接2到3个Pt100的接线图_______

b)

b) [2]c)接8个Pt100的接线图

c)

  产品简介LM-PT100、LM-PT1000是带LCD显示的热电阻温湿度传感器,工作于-40℃~+85℃( Link-Max 温湿度传感器主机范围,不是外接的传感器范围)工业级环境,采集温度范围为-200℃~+200℃,显示精度0.1℃;综合精度0.3℃。将我们的热电阻传感器与我们的RS-485中继器,可将原来只能连接32个PT100、PT1000热电阻采集模块连到同一网络曾多到255个,且最大通信距离为1200m。LM-PT100、LM-PT1000热电阻温湿度传感器还可以和LM-8052NET配合,组成TCP/IP的温度采集网络,可实现远程采集温度。

  详细内容LM-PT100、LM-PT1000、WD-PT100、WD-PT1000是一种新型的热电阻温度传感器采集模块(不带PT100、PT1000温度传感器,需另外购买),利用它可以实现两路现场温度的采集,同时利用其自身的RS-485总线串行通信接口可以方便地和环境监控主机或其他工控主机进行联网。工作于-40℃~85℃(主机范围,不是外接的传感器范围)工业级PT100、PT1000热电阻采集模块,按显示方式分有不带LCD显示的WD系列(WD-PT100、WD-PT1000)和带LCD显示的LM系列(LM-PT100、PT1000)两类。采集温度范围为-200℃~+200℃,显示精度0.1℃;综合精度0.3℃。PT100、PT1000热电阻采集模块可通过隔离的485通讯接口与RS-485局域控制网组网连接,RS-485最多允许32个PT100、PT1000热电阻采集模块挂在同一总线上,但如采用Link-Max的RS-485中继器,则可将多达256个PT100、PT1000热电阻采集模块连到同一网络,且最大通信距离为1200m。在将PT100、PT1000热电阻采集模块安装入网前,应对其进行配置,并首先应将模块的波特率与网络的波特率设为一致,同时应分别设置PT100、PT1000热电阻采集模块为不同的地址,防止各PT100、PT1000热电阻采集模块的地址冲突。将PT100、PT1000热电阻采集模块正确连接后,主机发出读数据命令即可使PT100、PT1000热电阻采集模块将数据送回主机。PT100、PT1000热电阻采集模块内的数据每秒钟更新一次,并周期性地更新LCD显示屏的显示数据(仅LM系列)。WD系列用于不需要显示温度的场合,如户外ATM机柜,该系列为DIN导轨安装型外壳。LM系列除可完成温度采集外,还可以预先设置温度的上下限报警值,当环境参数超过该设定值时,机内蜂鸣器立即响起报警声。PT100、PT1000热电阻采集模块是一种具有广泛应用前景的全数字化PT100、PT1000热电阻采集模块,使用该模块可使温度监控变得十分容易,PT100、PT1000热电阻采集模块可接两线制、三线制、四线制PT100、PT1000热电阻,当采用三线四线时,模块可对线阻进行有效地补偿。使电缆的长度不影响采集精度。该模块在环境监控系统、电力系统和工业自动化等领域获得广泛的应用,具有极优的性价比。PT100、PT1000热电阻采集模块还可和LM-8052NET配合,组成TCP/IP的温度采集网络,可实现远程采集温度

  技术参数输入响应时间(模块内数据更新率)为1秒同步测量1路隔离的485, MODBUS RTU通讯协议采用RS-485二线制输出接口时,具有+15kV的ESD保护功能速率(bps)可在1200、2400、4800、9600、19200、38400、57600、115200中选择可选的双协议通讯功能,客户可要求具有ASCII码格式或十六进制格式通讯协议当指令为ASCII码格式时,适合于微机编程接口;指令为十六进制格式时,适合于单片机编程接口可设置的温度上下限报警功能(仅LM系列)精度等级:0.2级供电电源:+7.5~30V功耗小于0.1W主机工作温度范围为-40℃~+85℃测量范围为-200℃~+200℃存贮条件为-40℃~+85℃(RH:5%~95%不结露)体积:LM系列为106mm×98mm×22mm;WD系列为26mm×98mm×41mm 安装方式:LM系列为壁挂式安装孔,内置斜撑支架也可桌面摆放;WD系列为DIN导轨卡装

  型号指南LM-400带LCD显示屏的网络型温度传感器传感器采集模块(自带温湿度传感器)LM-410带LCD显示屏的网络型温湿度传感器传感器采集模块(自带温湿度传感器)LM-420带LCD显示屏带上下限报警输出的网络型温湿度采集模块(可控制声光报警器)LM-PT100带LCD显示屏的网络型两路PT100热电阻采集模块LM-PT1000带LCD显示屏的网络型两路PT1000热电阻采集模块WD-PT100不带LCD显示屏的网络型两路PT100热电阻采集模块WD-PT1000不带LCD显示屏的网络型两路PT1000热电阻采集模块

  词条图册更多图册

© 安徽天康(集团)股份有限公司 版权所有 皖ICP备14054730号